Brilliant blue G attenuates lipopolysaccharide-mediated microglial activation and inflammation☆

نویسندگان

  • Kui Lu
  • Jue Wang
  • Bin Hu
  • Xiaolei Shi
  • Junyi Zhou
  • Yamei Tang
  • Ying Peng
چکیده

Previous studies have confirmed that oxidized adenosine triphosphate, a P2X7 receptor antagonist, attenuates lipopolysaccharide-mediated microglial activation and inflammatory expression following neuronal damage in rat brain. NaCl and temperature may affect the potency of oxidized adenosine triphosphate. Brilliant blue G is a derivative of a widely used food additive and has little toxicity. This study explored the effects of brilliant blue G, a selective P2X7 receptor antagonist, on microglial activation and inflammation. Results demonstrated that brilliant blue G inhibited the release of cyclooxygenase-2 and interleukin-6 in BV2 cells. Immunofluorescence displayed that brilliant blue G could suppress lipopolysaccharide-induced microglial activation. This study used RNA interference to block P2X7 receptor expression and found that small interfering RNA also suppressed the release of cyclooxygenase-2 and interleukin-6 in BV2 cells. These results suggested that downregulation of the P2X7 receptor by brilliant blue G was involved in the inhibition of microglial activation and inflammation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of Lipopolysaccharide Stimulated Nuclear Factor kappa B Mediated iNOS/NO Production by Bromelain in Rat Primary Microglial Cells

Background: Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. Thi...

متن کامل

Inhibiting purinergic P2X7 receptors with the antagonist brilliant blue G is neuroprotective in an intranigral lipopolysaccharide animal model of Parkinson's disease

Parkinson's disease (PD) is a common neurodegenerative disorder, which is characterized by the selective and progressive death of dopaminergic (DA) neurons in the substantia nigra. Increasing evidence suggests that inflammation is important in the degeneration of DA neurons. The purinergic receptor subtype P2X7 receptor (P2X7R) is key in the activation and proliferation of microglia. The presen...

متن کامل

Effects of Brilliant Blue G on Serum Tumor Necrosis Factor-α Levels and Depression-like Behavior in Mice after Lipopolysaccharide Administration

OBJECTIVE Accumulating evidence suggests that inflammation plays a role in the pathophysiology of major depression. The adenosine triphosphate (ATP)-sensitive P2X7 receptor (P2X7R) plays a crucial role in microglial activation caused by inflammation. The dye brilliant blue G (BBG) is a P2X7R antagonist. This study examined whether BBG shows antidepressant effects in an inflammation-induced mode...

متن کامل

Monascin ameliorate inflammation in the lipopolysaccharide-induced BV-2 microglial cells via suppressing the NF-κB/p65 pathway

Objective(s): The pathophysiology of neurodegenerative diseases is complicated, in which inflammatory reactions play a vital role. Microglia cells activation, an essential process of neuroinflammation, can produce neurotoxic molecules and neurotrophic factors, which aggravate inflammation and neuronal injury. Monascin, a major component of red yeast rice, is an azaphil...

متن کامل

P2X7 receptor activation regulates microglial cell death during oxygen-glucose deprivation.

Brain-resident microglia may promote tissue repair following stroke but, like other cells, they are vulnerable to ischemia. Here we identify mechanisms involved in microglial ischemic vulnerability. Using time-lapse imaging of cultured BV2 microglia, we show that simulated ischemia (oxygen-glucose deprivation; OGD) induces BV2 microglial cell death. Removal of extracellular Ca(2+) or applicatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013